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Abstract—This is an outline of the approach taken to
implement the project for the Artificial Intelligence course.
Autonomous driving has recently become an active area of
research, with the advances in robotics and Artificial Intelligence
technology. Therefore, the aim of the project was to apply
a Deep Reinforcement Learning technique to a racing game
to investigate the performance on autonomous driving tasks.
Our goal is to understand if reinforcement learning is a viable
algorithm genre for self-driving cars in addition to deep learning
through the use of the Outrun simulator as a first step. Several
algorithms were considered, and we include an extensive survey
of the related work; but only one algorithm could be trained
due to time and GPU-resource constraints.

The Deep Deterministic Policy Gradient algorithm was
chosen for the final implementation on account of actor-critic
algorithms generally outperforming value-based algorithms,
both in terms of the time and the resources required for
training the algorithm. The game used was the CannonBall
OutRun, which is a reimplementation of the classical SEGA
Out Run without any timing constraints or the presence of
traffic or opposing racers. The algorithm is evaluated based on
the improvements in the rewards received during the training
period. For our implementation, we used the open source neural
networks API, Keras, running TensorFlow in the backend.
Quantitative results are provided along with several screenshots
of the game during training.

A video of the algorithm training on the game at around
the 500 episode mark is available on YouTube. It was seen that
the ability of the agent to find a policy to maximize expected
rewards increases over episodes. This is noted visually as the
car travels further without crashing into obstacles and obtains
a higher score from the game.

I. INTRODUCTION

This project is part of the requirements for the Artificial
Intelligence course at WPI (Fall 2017), and deals with Deep
Reinforcement Learning which is a subset of Artificial Intel-
ligence. Reinforcement Learning deals with scenarios where
agents interact with the environment and attempts to use trial
and error to learn an optimum policy for sequential decisions
which in turn maximizes cumulative reward. Deep Neural
Networks have been integrated with Reinforcement Learning
where the value function, model, or policy can be replaced
with a deep neural net.

In this project we aim to see if a Deep Reinforcement
Learning algorithm can be trained to successfully play the Out
Run arcade game. The metric for success is explained further
in Section III-C.

While this project is implemented on an Outrun racing
simulator, the motivation and significance for this project is
to know if deep reinforcement learning algorithms can be

Fig. 1: Types of Autonomy levels in a Self-Driving car[1]

utilized to obtain proper and safe driving policies in actual
self-driving vehicles. In actual self-driving cars with more
comprehensive sets of states, observations, and actions better
tuning of rewards and policies would naturally be needed.
Should the Reinforcement learning be apt on simulation, with
further training and better implementation it can be utilized
with other deep neural networks as part of an ensemble
in hardware. In such a system, the agent would maintain
autonomous driving if there is a consensus between at least
two of the algorithms in the ensemble, and if there is a
discrepancy, hand over control to a human driver.

This report is divided into five sections. We introduce
the project and describe the problem statement in Section I.
Section II provides a detailed discussion of the related and
useful work to the present project. The initial plan for the
implementation and evaluation of the algorithm is presented
in Section III. Section IV describes the methodology employed
for the execution of this project and the results of the perfor-
mance evaluation are given in Section V. Finally, Section VI
provides the conclusions and final remarks on the project and
speculates probable directions for future work.

II. LITERATURE REVIEW

Autonomous driving has been an extremely active research
area in the fields of Robotics, AI, and Controls since Stan-
ford’s Stanley won the 2005 DARPA Grand Challenge using
a machine-learning based obstacle avoidance software and
focusing on improving algorithms than implemented hardware.
In the real-world, there are four levels of autonomy as seen in
Figure 1.

To create an autonomous agent, there are three main tasks
that need to be completed, namely Recognition, Prediction,
and Planning. Recognition deals with identifying components
in the surrounding environment such as pedestrians, traffic

https://youtu.be/4BtnUsA77_o
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signs, surrounding cars that will be of interest for our agent.
Prediction uses information obtained to predict the future state
of the environment such as building a map or object tracking.
The planning stage deals with creating an efficient model to
plan a series of driving actions for successful navigation. The
combination of Reinforcement Learning and Deep Learning
helps the agent achieve human-level control.

[2] proposes a lightweight framework that uses asyn-
chronous gradient descent for the optimization. The authors
analyze and present asynchronous versions of four standard
reinforcement learning algorithms - Single step Q-Learning,
Single step SARSA, n-step Q-Learning, and the A3C. They
found that using parallel actor learners to update a shared
model had a stabilizing effect on the learning process of
value-based methods. [3] is arguably the most similar to the
present work. They implement [2] for end-to-end driving in
a car game, and rely only on images and car speed from the
screen. The main difference between this implementation and
the implementation provided in [2] is that they use the World
Rally Championship 6 (WRC6) simulator which they argue to
be more realistic.

An iterative procedure for optimizing policies is proposed
in [4] and guarantees a monotonic improvement. The authors
unify policy gradient and policy iteration methods, and show
them to be special cases of optimizing a certain objective -
subject to a trust region constraint. The issue with applying
TRPO or its equivalent PPO, is that these algorithms are very
data hungry and require thousands of images to train.

One of the recent developments for end-to-end driving
was proposed by researchers in NVIDIA[5]. They utilized
a single camera mounted on the hood of the car to obtain
road images with steering angle labels. An end-to-end
Convolutional Neural network was trained to map pixels
to steering information. It was found that the CNN learns
to implicitly detect road outlines etc, and also to output
an appropriate steering angle given an input road image.
However, most algorithms used in real-world driving cars
utilize just deep learning. This end-to-end network could be
implemented on a expert-driven policy i.e. where a human
demonstrates actions to take on a lap as a form of imitation
learning/behavioral cloning. The issue with imitation learning
is that the data is not IID, and has no failure cases, such that
the algorithm diverges by a small error every time creating
compounding mistakes. This can be corrected in a costly
manner using a DAgger policy (Data Aggregation) where
data is obtained from run policies, and is added to the dataset
and used to retrain a new policy.

Implementations of reinforcement learning were performed
in simulation[6], as is what will be done with our project.

The main challenges of implementing a DRL algorithm
on a simulator would be training it on a GPU cluster until
the normalized reward vs. steps/episodes reaches steady-state.
Furthermore, choosing a proper actor-network, a critic-
network, as well as a proper reward function are the natural
challenges of this project. It involves having to properly
understand the observations that can be utilized, as well as

understanding the scenario. There are few immediate benefits
from solving this problem, however, it will show that as a
proof of concept, that reinforcement learning algorithms can
be utilized for solving simulation games for driving behavior.
With proper tuning of reward functions, perhaps, the same
approach could be used as one possible algorithm (among an
ensemble of algorithms) in actual hardware.

TABLE I: Evaluations of different DRL training algorithms
on 57 Atari 2600 games

Method Training Time Mean Median
DQN 8 days on GPU 121.9 % 47.5 %
Gorila 4 days, 100 machines 215.2 % 71.3 %
D-DQN 8 days on GPU 332.9 % 110.9 %
Dueling D-DQN 8 days on GPU 343.8 % 117.1 %
Prioritized DQN 8 days on GPU 463.6 % 127.6 %
A3C, FF 1 day on CPU 344.1 % 68.2 %
A3C, FF 4 days on CPU 496.8 % 116.6 %
A3C, LSTM 4 days on CPU 623.0 % 112.6 %

Table I is a survey of training speeds of different algorithms
on 57 Atari 2600 games. Due to time constraints as well as re-
source issues, one of the main considerations was to choose an
algorithm that provided a relatively high mean score/accuracy
with a low(er) training time. It was seen that overall, policy-
based advantage actor-critic methods outperforms value-based
methods that were used.

III. METHODOLOGY

In this section, we lay down possible algorithms and sim-
ulators that were looked into, and could be used for our
project. Following further research, Deep Deterministic Policy
Gradient (DDPG) algorithm was selected to be trained on
the CannonBall OutRun environment. OutRun was chosen
because of the popularity of the game and the simplicity of
the interface.

A. Algorithms

There are a number of existing algorithms[7], [8] that can
be used to solve this problem such as the Adaptive Heuris-
tic Critic, TD(λ) algorithm, Q-Learning algorithm, Asyn-
chronous Actor-Critic (A3C), or Trust-Region Policy Opti-
mization (TRPO).

Figure 2 shows the basic reinforcement learning structure
that the other algorithms build upon. Actor-critic methods
(Figure 3) implement generalized policy iteration and work
toward policy evaluation and improvement. The actor aims
towards improving the current policy, while the critic performs
an evaluation of the policy. This is better than critic-only poli-
cies (e.g. Q-learning, which uses a state-action value function
without a reliable guarantee of convergence or optimality of
policy), or actor-only policies (e.g. REINFORCE algorithms
which optimize cost over the policy parameter space, and
while has a strong convergence, the estimated gradient has
large variances).

In actor-critic algorithms, the critic approximates and up-
dates a value function using samples. This is then used to up-
date an actor’s policy to improve performance, while ensuring
convergence. The actor is responsible for generating a control
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Fig. 2: Basic Reinforcement Learning approach to iterate on
policies[2]

Fig. 3: Architecture of Actor-Critic

input given a current state, while the critic is responsible to
evaluate the quality of the policy by modifying the value
function estimate. The evolution of actor-critic methodology
is illustrated in Figure 4.

Our implementation is based on David Silver’s [9] paper,
Continuous Control with Deep Reinforcement Learning. The
implementation of Deep Q-Network (DQN) has been found
to have high performance on Atari video games with pixel-
input. However, while DQN works in high-dimensional ob-
servational space, it works decently only in low-dimensional
action space as maximizing action-value function is iterative
at every timestep and computationally expensive.

B. Software Tools

The software tools that we plan to use for this project
are TensorFlow, Keras, and an environment simulator for the
driving/racing game.

TensorFlow is an open source software library for
numerical computation using data flow graphs. It was
originally developed by researchers and engineers working on
the Google Brain Team within Google’s Machine Intelligence
research organization for the purposes of conducting machine
learning and deep neural networks research. Keras is a high-
level neural networks API that runs on top of TensorFlow. It

Fig. 4: Actor-Critic Methodologies[9]

is an user-friendly, modular, easily extensible API that can be
worked on using Python.

The choice of environment is of vital importance for
this project. OpenAI gym’s driving environment which shows
a simplistic top-down view of a track could be used as a test
or even final simulator. Racing games such as TORCS (The
Open Racing Car Simulator) or World Rally Championship
which are 3D racing games with physics engines and Out-Run
or Dusk-Drive which are the 2D versions of a racing game
can be chosen due to ease of implementation. An additional
selection would be GTA V which provides the most realistic
simulator with other agents/vehicles as well as pedestrians,
however combining and feeding in the outputs of an RL
algorithm into GTA is complex.

C. Evaluation

There are multiple ways to evaluate the algorithm, depend-
ing on the exact environment of the game. If it’s a racing game,
the metric can be the total time taken by the agent to drive
around the track or the average speed of the car throughout
the lap, as well as whether the agent wins the first place. The
metric for a driving game will be whether a lap could be
successfully completed by the agent or not, without crashing
into obstacles or performing any dangerous driving actions.
Another possible metric would be training-testing losses, and
accuracy during training the neural networks within the DRL
algorithm.

The project was finally carried out on Out Run, the 1986
arcade game by SEGA, using the Deep Deterministic Policy
Gradient (DDPG) algorithm [9]. We also implemented the
Asynchronous Advantage Actor-Critic (A3C) algorithm for
training on the CarRacing-v0 Box2D environment of OpenAI
Gym. However, the Box2D environments were discovered to
be not thread-safe, which prompted the use of other simulators
like TORCS and CannonBall. CannonBall was chosen based
off of the popularity and success of the game.

D. CannonBall OutRun

OutRun is a 3D video driving game released by SEGA in
1986. The objective of the game is to reach the destination
before a set timer counts down to zero. CannonBall is an open
source OutRun implementation that boasts 60 FPS gameplay,
widescreen and high resolution sprite scaling along with
other enhancements. Illustrated in Figure 5, it is a complete
reimplementation of the original game, in C++.
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Fig. 5: CannonBall OutRun- Algorithm input state

A reward function and the appropriate environment structure
was implemented from scratch to enable the deep reinforce-
ment algorithm to learn to play the game. At each step, unless
the car was in one of the penalty states described below, a
positive reward equal to the log speed of the car was awarded
to the algorithm (the log speed results in a normalized reward
based on the speed that doesn’t outweigh any other terms in
the reward policy). A penalty of -0.04 was given for states in
which the car was on track but was not moving, -0.6 when
the car went off-road (Figure 6) and -2 for crashes (Figure 7).

Fig. 6: The car wheels going off-road. Our DDPG algorithm
outputs a penalty of -0.6 for this state.

E. Deep Deterministic Policy Gradient Algorithm

The Deep Deterministic Policy Gradient (DDPG) algorithm
[9] is an off-policy, model-free technique that builds on the
previous work on Deterministic Policy Gradients. It is a policy
gradient algorithm that uses a stochastic behavior policy for
exploration and estimates a deterministic target policy. DDPG
uses two neural networks for the actor and the critic, predicting
actions for the current state and generating temporal-difference
error signals at each step as seen in Figures 3 and 4, the
DDPG implementation uses an stochastic exploration policy
(seen in Equation 1) to implement a deterministic target policy.
Furthermore, the policy-gradient optimizes a policy end-to-
end by using noisy estimates of the gradients of the expected

Fig. 7: A crash state on the simulator. The DDPG algorithm
returns a penalty of -2.0 and resets the car during this state.

Algorithm 1 Deep Deterministic Policy Gradient Algorithm

Randomly initialize critic network Q
(
s, a|θQ

)
and actor

µ
(
s|θµ

)
with weights θQ and θµ

Initialize target network Q′ and µ′ with weights θQ
′ ← θQ,

θµ
′ ← θµ

Initialize replay buffer R
for episode=1:M do

Initialize a random process ℵ for action exploration
Receive initial observation state s1
for t=1:T do

Select action at = µ
(
st|θµ

)
+ ℵt according to the

current policy and exploration noise
Execute action at and observe reward rt and observe
new state st+1

Store transition
(
st, at, rt, st+1

)
in R

Sample a random minibatch of N transitions(
si, ai, ri, si+1

)
from R

Set yi = ri +
′ (si+1, µ

′(si+1|θµ
′)|θQ′)

Update critic by minimizing the loss:

L =
1

N

∑
i

(
yi −Q

(
si, ai|θQ

))2
Update the actor policy using the sampled policy
gradient:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|(si,µ(si))∇θµµ
(
s|θµ

)
|(si)

Update the target networks:

θQ
′
← τθQ +

(
1− τ

)
θQ

′

θµ
′
← τθµ +

(
1− τ

)
θµ

′

end
end

reward in a policy to update the policy in the direction of the
gradient, which in turn updates weights of the actor neural
network.

dXt = θ
(
µ− xt

)
+
(
σdWt

)
(1)

Equation 1 is the Ornstein-Uhlenbeck exploration process
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(opposed to the Epsilon-Greedy approach) to obtain tem-
porarily correlated exploration independent from the learning
algorithm and tries to mimic a particle under Brownian motion
(random motion Wt ) with friction. In this case θ, µ, and σ
are parameters of the DDPG algorithm, while Wt is obtained
from the standard normal distribution.

One of the issues when using Neural Networks for DRL
is that the policy assumes that samples are IID (Independent,
Identically Distributed), however this is not so when samples
are obtained sequentially. For this reason, DDPG uses replay
buffers from DQN where transitions are sampled from the
environment according to the policy, and the tuples of state,
action, reward, next-state are stored in the replay buffer (which
is periodically renewed). The actor and critic are updated by
sampling from this replay buffer.

The input to the network is the current state RGB pixel
values and the output is a set of Steering/Acceleration/Brake
values. The steering can take the values left/right/none, and
the acceleration and brake values are either on or off. The
pseudocode for the DDPG algorithm from [9] is presented in
Algorithm 1 for reference.

F. Experiments

The training was carried out in a virtual python environment
that was created using Conda. Conda is an open source pack-
age management and environment management system that
enables the user to easily run different versions of software in
different virtual environments. The environment was first setup
with all the tools required for running the algorithms - Python,
TensorFlow, Keras, etc. The performance of the algorithm was
evaluated by training it on the simulator interface for 8 hours,
and the results are discussed in the next section.

IV. RESULTS

A screen capture of the algorithm training on CannonBall
OutRun is presented in Figure 8. Short videos of the prelimi-
nary training of the algorithm are also available on YouTube
- here and here. After training for 500 episodes, the resulting
policy outputs the video here on YouTube. During the initial
stages of training, a random policy was much more effective
at obtaining higher rewards than the DDPG algorithm.

Fig. 8: DDPG training-in-progress on CannonBall OutRun
showing an output velocity of 114km/h

The algorithm was trained for nearly 1000 episodes on a
single Intel i3 CPU. The rewards for each episode were plotted
against the number of episodes and this plot is shown in Figure
9.

Fig. 9: Reward per episode over 1000 episodes

In the first few episodes of training (around 300 episodes),
the rewards obtained by the algorithm are around a total of
2 on average. As the training progresses, and the number of
episodes increases, it can be seen that the rewards accumulated
by the algorithm at the end of each episode range from about
12 to 0, and the average reward increases to about 6 per
episode. Due to time and computing power constraints, we
could not train the algorithm for more than 1000 episodes.

Although there is no significantly apparent improvement in
the rewards over 1000 episodes, there is a slight increase in
the trend of the rewards which indicates that a longer training
time over higher number of episodes may yield better results.
Furthermore, the latest DDPG policy shows that the algorithm
learns an interesting trend- at some sections of the track, the
agent goes off-road to reach a different track in the game.
This means that it accepts slight negative penalty obtained
from the wheels going off-road at the current state, to be
compensated by a much higher reward obtained from higher
speeds in subsequent timesteps from simpler laps. This means
the reward function needs to be more finely tuned to penalize
tires off-road (e.g. number of time-steps off road multiplied
by the number of tires off-road and a higher constant penalty).

Additionally, our DDPG implementation was done on a
game without time limits or opposing traffic/racers. This
was done as Cannonball Outrun only outputs crashes with
the environment (and not opposing vehicles) as observations
which means that our implemented reward function cannot
consider these crashes leading to an incorrect policy. The
issue with not having time limits in the game is two-edged;
the game is open-ended with different track choices leading
to different environments opposed to just racing around a
similar lap which would mean that the algorithm needs to
be continuously trained. However, if timings were imposed,
the reward function needs to be better tuned such that the

https://youtu.be/50K6Wu_4Qns
https://youtu.be/lsY_NYFu77c
https://youtu.be/4BtnUsA77_o
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car goes as fast, accounts for the time remaining, and also
account for the possibility that the car needs to brake/reduce
speed at certain sections of the road to avoid crashing in
subsequent sections (and hence not be penalized for this
foresight).

V. CONCLUSIONS

This project acted as the culmination of the knowledge
acquired during the course CS 534, Artificial Intelligence, at
WPI.

Although the algorithm was tested on a game simulation,
the results strongly suggest that Deep Reinforcement Learning
techniques are very much capable of competing with the
current best end-to-end control systems for autonomous
driving. The main bottlenecks with this algorithm were
the proper choice of Actor, Critic networks given training
states and testing observations/sensor inputs as well as
reward functions. Additionally, the choice of algorithm can
be better evaluated by comparing different algorithms such
as Asynchronous Actor Critic or even Proximal Policy
Optimization as well as random policies and evaluating
the mean score or completion time that was obtained
over multiple trials. In addition to this, for simplicity, our
implementation assumed no traffic and an unlimited time
trial- subsequent iterations of this project can have opposing,
adversarial cars and time trials.

Future work can be dedicated to implementations dealing
with more realistic simulators that do not allow a constrained
action space. Additionally, real world implementations prove
to be exponentially more difficult to execute and since the
current work is only in simulations, the implementation of the
algorithm on real world systems is a very important direction
of research. An additional future work could be to use this
DDPG algorithm that outputs actions for the trained policy at
every timestep in conjunction with an end-to-end deep neural
network that also takes in images as an input and extracts a
single action. In such an algorithm, the action will only be
performed if there is a consensus between the two, else no
action is taken.
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