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Verification of Hierarchical Control via
Approximate Simulation and Feedback

Linearization
Andres Cabrera-Flor, Joseph McMahon, and Nishan Srishankar

Abstract—The project is to verify approximate simulations of
hierarchical controllers for high-order nonlinear systems that are
feedback linearizable. Recent work has been done by J. Fu, [1]
(2013) and G. J. Pappas [2] (2000) on the production of low-order
linear controllers via approximate simulation relation, which
is the basis for the project. Creating low-order specifications
that guarantee correctness under unknown disturbances in the
original high-order system remains an open scientific question.
Progress will be made towards verification by considering the
simplified scaling chains of integrators problem, and iteratively
adding complexity to it. For example, obstacles were ignored.

I. PROGRESS MADE

The motivation of the project is to make progress towards
the open question of verifying hierarchical controllers, it is
important to document the steps planned and completed, and
describe what remains for future work.

1) All of the open-source Python libraries are installed
and working on all three team members’ Ubuntu in-
stallations. Team WPI’s submission to ICRA 2016’s
Fmrchallenge also works.

2) The Π-related low-order system was automatically gen-
erated from the original high-order system using our
HCA toolbox. [2] The Π-related systems from the Fu
paper and Pappas papers are described in the Dynamics
and Controls sections. After getting the low-order gain
matrix K from the LQR controller, there was no way
to simulate it back in the high-order system due to the
ROS architecture of Fmrbenchmark. This is to enforce
that your controller behaves as specified. To program
the Π-related simulation, it was attempted that another
Instance Monitor was spun up with the same Problem
Instance (i.e. n = 2, m = 3), but a lower number of
integrators (i.e. m = 1). Finally, it was realized too late
that an additional ROS topic was the better solution.

3) A key observation made while implementing the HCA
toolbox was that by changing the gain matrix K output
by the LQR controller to favor velocity and acceleration
over position, much faster simulation times could be
achieved as shown in 1.

4) Tulip was attempted to be used to automate the gener-
ation of the high and low-order systems’ LTL specifi-
cations and Omega automata. There were again ROS
software engineering issues that made it difficult to
integrate Fmrbenchmark with Tulip, and Polytope has
a known bug as well. [13]

(a) First LQR with HCA-influenced gain matrix K.

(b) Second LQR with HCA-influenced gain matrix K.

Fig. 1: Using the Π-related system created from the HCA
toolbox, some interesting and speedy results were obtained.

II. INTRODUCTION

Optimal control is easily achieved for low-order linear
systems with controllers such as PID or LQR, whereas high-
order systems are more accurate models. However, generating
controllers from high-order specifications is computationally
complex. [2]

If low-order linear specifications and their automatically
generated controllers can guarantee correctness of the original
high-order specification, it is very valuable. [1] This is because
most systems can be reformulated into high-order systems, and
then verified low-order controllers automatically generated. [8]

The high-order specifications shown below in equations 1
and 2 are typical Linear Temporal Logic constraints. A point-
robot must visit all of the goal regions and avoid all of the
obstacle regions.

q(0) = init ∧�(q(t) /∈ Obs) ∧
∧
i

�♦goali (1)
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In constraint equation (2), a time constraint is added.

q(0) = init ∧�(q(t) /∈ Obs) ∧
∧
i

(counteri 
 Ti)
⋃
goali

(2)
where Obs ⊂ Rn; init ∈ Rn.

Sample 2D and 3D trajectories are shown below in Figures
2, 3, and 4.

Fig. 2: LQR tracking A* generated paths.

Fig. 3: Visualization of a path in 3D state space with
obstacles.

This is a good team to work on this approach to the
verification problem because of Joseph McMahon and Nishan
Srishankar’s previous work with chains of integrators for
the ICRA 2016 Fmrchallenge in Stockholm, Sweden. [11]
Previously written code has already been integrated with Scott
Livingston’s open-source frameworks (Fmrbenchmark, Tulip,
Polytope) and may be leveraged to speed up testing. [12] The
team also wants to contribute to these open-source Python
libraries in the near future if possible.

Fig. 4: A* and LQR controlling a point robot in 3D state
space.

A. Problem Statement

The goal is for the point robot to move through the goal
regions without hitting obstacles. This requires trajectory gen-
eration, motion planning, and controls. However, to make the
verification problem more approachable, obstacles are being
ignored at first, and will be reimplemented as the last step of
the approach.

The temporal logic equation can be depicted as an automa-
ton for i = 1 as shown in Figure 5.

Fig. 5: Buchi Automaton for given LTL equation for one
goal and one obstacle.

Two controllers are bisimilar when they both have the same
transition system (identical labels). Furthermore, for one goal
and one obstacle, the controllers both satisfy the specifications
if they conform to the Buchi Automaton in Figure 5.

The inputs of the project are: high-order systems and
specifications, and several disturbance thresholds.

The outputs of the project are: minimum-order linear sys-
tems, specifications, and controllers that guarantee correctness
in the original high-order system.



WPI, RBE 595 FORMAL METHODS OF ROBOTICS, FALL 2016, FU 3

III. METHODOLOGY

The complexity of the problem requires it to be simplified,
and then extended later. This will be done by considering linear
systems instead of nonlinear feedback linearizable systems.
The methodology is broken into three main steps, which serve
as the expected project goals.

A. Expected Goals

The expected goals are what the team believes it can
accomplish during the Fall 2016 semester. Four of the five
expected goals were met by following the Approach section.

1) Generate Π-related low-order systems from high-order
chain of integrators.

2) Control the low-order system in the high-order state
space while ignoring obstacles.

3) Compare output of low-order LQR trajectories with
original high-order state space and specification.

4) Automate the generation of LTL specifications and
Omega automata.

5) Switch LQR controller to Tulip’s Control2Facet con-
troller and motion planner. This is the only expected
goal that was not met.

B. Reach Goals

It is not expected that the team will complete any of
the reach goals during the Fall 2016 semester, but they are
important to show the next steps and general logic of the
approach. They may be implemented in the future as part of
directed research or a doctorate study.

1) Add disturbances to the high-order system and control
it. Compare to low-order system results.

2) Add obstacles to the high-order system and control it.
Compare to low-order system results.

3) Update low-order specifications to satisfy high-order
specifications under the disturbance threshold.

4) Extend the work to nonlinear feedback linearizable
systems (or intermediate class of systems).

If time allows, the project work will be extended to non-
linear systems. It may not be practical to extend the linear
work directly to nonlinear feedback linearizable systems, and
there may be an easier subset of nonlinear systems to work
with. For example, nonlinear systems that ”enjoy a structural
property known as differential flatness” [1] are easy to work
with because they are made up ordinary differential equations
which are easier to linearize.

IV. APPROACH

The first thing done was to refamiliarize the team with
Fmrbenchmark and Team WPI’s ICRA 2016 Fmrchallenge
code, and setup a new coding environment for the team to
work on. There were a few installation problems with Polytope
early on. After this, obstacles were removed by creating a new
configuration file in the integrator chains dynamaestro.

The HCA function [2] was made into a new toolbox, the
HCA toolbox, which calculates the new low order system
dynamics F and G from the high order system dynamics A and

B. Π-relation system generated and ran simultaneously to the
original high-order system simulation. The low and high-order
results were overlaid and compared. The LTL specification and
Omega automata were generated for both the low and high-
order systems.

The next steps are to finish implementing Tulip’s Con-
trol2Facet controller and motion planner, and then to add noise
and disturbances in, and finally add obstacles back in.

It will be difficult to characterize the behavior around
obstacles due to disturbances, and that is the main challenge
of the entire project. However, a large amount of work must
be completed prior to this.

1) Generate Π-related low-order system from high-order
chain of integrators.

2) Control the low-order system in the high-order state
space using the Π-relation from step 1 and LQR control.
Ignore obstacles.

3) Compare output and specification of low-order LQR
trajectories from step 2 with high-order output and
specification.

4) Use Control2Facet to control the low-order system.
a) Generate LTL.
b) Synthesize controller.
c) Generate Omega Automata.

5) Add disturbance to the high-order system. Update low-
order specifications to satisfy high-order specifications
under the new disturbance threshold.

6) Add obstacles back in.

Steps 1-4 were worked on during the Fall 2016 semester.
One major issue was the amount of time it took to work with
the Python libraries, since there is relatively little documenta-
tion and almost no active community. These issues only serve
to justify why these open-source Python libraries deserve more
attention and contribution.

A. Open-source Python Libraries

The toolkits and programming languages used can affect
the results and execution of a analytical project such as this.
It is necessary to explain why the selected libraries and Python
were chosen.

The Python language and the various open-source libraries
for it lend itself well to benchmarking problems, because of the
freely available source code. The industry can agree on a set
of benchmarking tools, and easily compare results. The com-
peting alternative is Matlab, which is a well-established pro-
prietary software system. Although Matlab has robust toolkits
and active community, it is not suitable or adaptable enough
to serve an industry-wide robotics benchmarking application.

The primary libraries were Fmrbenchmark and Tulip. They
are described below, as well as their core dependencies.

• Rospy (http://wiki.ros.org/rospy) is a Python wrapper for
Roscpp, which is C++ Robot Operating System ROS
(http://wiki.ros.org/) package manager. ROS is an indus-
try standardized common adapter for open-source and
proprietary robotics libraries.

http://wiki.ros.org/rospy
http://wiki.ros.org/
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• Fmrbenchmark is a robotics benchmarking tool writ-
ten by Scott Livingston and Vasumathi Ramen un-
der Richard Murray at Caltech. (https://fmrchallenge.
org/, https://github.com/fmrchallenge/fmrbenchmark) It
has three common domains: Scaling chains of integrators,
Traffic network of Dubins cars, and Factory cart clearing.
It is a good benchmarking framework because of its abil-
ity to accurately handle errors, noises, and disturbances
in near-continuous systems.

• Python-control is a controller toolbox maintained
by Scott Livingston (https://github.com/python-control/
python-control) that is only being used for the Linear
Quadratic Regulator that comes default in Fmrbench-
mark. One goal is to switch out the LQR controller for
Tulip’s Control2Facet controller. The LQR controller is
omitted from this report because it is well-known and
well-documented.

• Tulip-control is a large FMR toolbox primarily written
by Scott Livingston. It contains the Control2Facet
functionality without explicitly stating that it
does (https://github.com/tulip-control/tulip-control,
http://tulip-control.sourceforge.net/, http://tulip-control.
sourceforge.net/doc/install.html).

• Gr1c is GR(1) synthesis for LTL specifications which is
primarily used by Tulip (https://github.com/tulip-control/
gr1c).

• Polytope is a tool for easily representing goals and ob-
stacles as polytopes. This implementation uses very little
memory to represent polytopes, which helps functions
that take polytopes as inputs be very fast.

• Team WPI’s submission to ICRA 2016 Fmrchallenge
contains 3D plotting, TSP, other helper functions that are
already integrated with Fmrbenchmark.

V. DYNAMICS

Because high-order linear systems are the first step, an
analysis of linear systems is presented.

From the primary paper [1], the following Π-related method
is used to find an abstraction of a given higher-order linear
system:

Σ1 : ẋ = Ax+Bu

y = Cx

Where the state matrix is Rn, the input and output matrices
are Rm. Additionally, it is assumed that the given higher-order
system is stable i.e. eigenvalues of (A-B*K) will have negative
real parts. A second, lower-order system is presented to be:

Σ2 : ż = Fz +Gv

w = Hz

In this case, the abstraction has a state matrix Rp, an input
matrix Rk and an output Rk. By definition, p ≤ n as the
abstraction will have a lower rank that the given system. Σ2

is Π-related to Σ1 if the following hold:

Π[Ax+Bu] = FΠx+Gv

C = Hπ

w(t) = Πx(t)

where Π is a p× n matrix and ker(Π) = Im(Π)

The approximated system matrices then become:

F = Π×A×Π+

G = Π×A×B

Π+ is the pseudo-inverse of Π obtained by Singular-Value-
Decomposition, and equals ΠT (Π×ΠT )−1.

Our initial idea is to approximate a higher order chain of
integrators with that of a single integrator using the method
shown above. The dynamics of the system are relatively simple
as the problem requires controlling a point robot. A two
dimensional system (single integrator) can be expressed as a
linear system of equations given below:

ẋ =

[
0 1
0 0

]
x+

[
0
1

]
u+ ξ

y =
[
1 0

]
+ η

where ξ and η are either bounded disturbances (non-
deterministic) or stochastic processes.

The system given by the differential equation Dmq = u is
called a chain of integrators because it can be written as a
series of linear control equations as shown below.

ẋ1 = x2

ẋ2 = x3

...

ẋm−1 = xm

ẋm = u

y = x1

VI. CONTROLS

The Π-relation will be used to generate a low-order sys-
tem which can be easily controlled along a trajectory. The
Control2Facet methodology will then be used to do motion
planning and control the low-order system.

Although the LQR controller is being used in the early steps,
it is not reviewed because there is an abundance of prior art
and information on the LQR controller.

A. Π-relation Controller

The Π-related system is trivial to generate because both
the high and low-order systems are linear scales of integrator
chains. The big issue is programming the simulators to run
concurrently, or even consecutively.

https://fmrchallenge.org/
https://fmrchallenge.org/
https://github.com/fmrchallenge/fmrbenchmark
https://github.com/python-control/python-control
https://github.com/python-control/python-control
https://github.com/tulip-control/tulip-control
http://tulip-control.sourceforge.net/
http://tulip-control.sourceforge.net/doc/install.html
http://tulip-control.sourceforge.net/doc/install.html
https://github.com/tulip-control/gr1c
https://github.com/tulip-control/gr1c


WPI, RBE 595 FORMAL METHODS OF ROBOTICS, FALL 2016, FU 5

(a) Trajectory of LQR tracking A* path.

(b) Evolution of State Vector while LQR tracks A* path.

Fig. 6: Simulation of LQR tracking A* generated path. It
successfully avoids one obstacle and reaches one goal region.

VII. MOTION PLANNING

Motion planning will also be achieved using the Con-
trol2Facet methodology. [7] This method first breaks the state
space into simplexes (triangles in 2D, tetrahedra in 3D), which
are formed with the corners of the goal and obstacle regions,
and are within the bounds of the state space.

The simplexes that must be visited to satisfy the specifica-
tion are identified. The facets between these simplexes each
require a controller that guarantees any initial condition with
the first simplex will result in the point robot exiting the
required facet.

VIII. RESULTS

Progress was made on the first four item from the Approach
section, the completion of those tasks and steps 5-6 remain for
Future Work.

1) Generate Π-related low-order system from high-order
chain of integrators. Progress was made in automatically
generating the Π-related low-order system dynamics F
and G from the high-order system dynamics A and B.
This was done by creating a new HCA toolbox from
the pseudo-code in the Pappas paper [2]. The issue
then, however, is that the new low=order LQR controller
outputs a gain matrix K that cannot be used on the
original high-order state space u = −Kx. Although
the Fmrbenchmark default LQR code uses −K, it was
observed that the gain matrix scale from the HCA
toolbox needed to be positive so that u = Kx.

2) Control the low-order system in the high-order state
space using the Π-relation from step 1 and LQR control.
Ignore obstacles. There was some surprise success in
editing the gain matrix K with the output from the HCA
toolbox as shown on Page 1 in 1. However, in general
the two plots could not be overlaid on top of each other
due to software engineering issues. Ignoring obstacles
was no problem and was as simple as making a new
configuration file and running catkinmakeinstall.

3) Compare output and specification of low-order LQR
trajectories from step 2. with high-order output and
specification. Without obstacles, error or disturbances,
there is no reason that either system should be difficult
to control.

4) Use Control2Facet to control the low-order system. Two
attempts were made at implementing Tulip to automat-
ically generate the formatted LTL specifications and
synthesize the Omega automata. The first was based
on the continuous.py Tulip example, and the second
was based on the continuouswithsimulation.py ex-
ample. The continuous.py example was inserted into
the main() function of Fmrbenchmark’s default LQR
controller The second attempt was the reverse, inserting
Fmrbenchmark code into Tulip code. The abstraction
input was generated but again could not be easily
integrated with FMRBenchmark. The result was that
we were informed that a bug in Polytope needs to be
addressed. [13]

a) Generate LTL. The LTL Specification format for
Tulip is defined in the documentation. This spec-
ification is then synthesized using GR(1) LTL
synthesis.

b) Synthesize controller.
c) Generate Omega Automata.

Using the scale of integrators problem and framework offered
an approachable and testable method to hierarchical controller
verification. This project helped refine the steps that need to
be taken towards the final goal of verifying reduced nonlinear
systems.

IX. CONCLUSION

This project required Formal Methods of Robotics, Linear
Algebra, and Software Engineering skills which were respec-
tively filled by N. Srishankar, A. Cabrera, and J. McMahon.

In the Formal Methods of Robotics domain, more time
should have been devoted to exploring Tulip’s features early
on, but installation problems did not get fixed and Fmr-
benchmark was the primary focus. Fmrbenchmark itself is
an impressive system, but there were a large number of
problems integrating it with Tulip. For example, after passing
variables like the system dynamics from Fmrbenchmark to
Tulip, the ROS architecture of Fmrbenchmark completely
supresses Tulip. The proper way to engineer it would have
been to create a new ROS topic using Tulip, and have it listen
to Fmrbenchmark as the trials are generated. This would also
allow it to be run on a spread thread.

Furthermore, the concept of threading in ROS is an im-
portant one, because it is the same problem we had in
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(a) Tulip continuous state space divided into home, free space, and one
goal at the top right.

(b) Screenshot of Tulip performing facet transition and controller
synthesis.

Fig. 7: Tulip synthesizes controllers for continuous state space
linear dynamical systems.

the Linear Algebra domain after implementing the HCA
toolbox for Approach step 1. If ROS topics can be managed
properly, multiple scaling chains of integrators problems can
be simulated concurrently (original high-order and low-order
approximation at the same time). This capability would have
profound impact on our ability to produce better results.

Finally, Software Engineering time was not accounted for
sufficiently. More time should have been spent on the ap-
proaches mentioned earlier, but then again many of those
problems were unknown unknowns of the beginning of the
Fall 2016 semester.

A. Future Work

Future Work remains in completing steps 1-4 and contribut-
ing to any open-source Python libraries required to make it
happen. After that, the approach should be continued with
steps 5-6 below.

1) Add disturbance to the high-order system. Update low-
order specifications to satisfy high-order specifications
under the new disturbance threshold.

2) Add obstacles back in.
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(a) Discrete state space GR(1) Omega automaton.

(b) Continuous state space GR(1) Omega automaton.

Fig. 8: Tulip outputs GR(1) Omega automata.
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