
Udacity Self-Driving Car Nanodegree
Term One: Computer Vision & Deep Learning

Project One: Finding Lane Lines

Nishan Srishankar
Worcester Polytechnic Institute

2017

1 Introduction

One of the fundamental aspects in implementing a self-driving car is perception and deals
with how a car would identify aspects of interest that are necessary for its functioning or could
impede its performance. This could include traffic signs, signals, neighboring vehicles, lane
lines, and even chaotically behaving humans or cyclists. This project deals with identifying
lane lines on a highway, and overlaying necessary information on this line.

2 Methodology & Implementation

This section deals with the algorithm utilized for simple vision and perception of lane lines.
For simplification, this algorithm is tested on a highway with minimal traffic (no bumper-
to-bumper traffic), on roads with little curvature or incline during daytime (with high levels
of ambient light). The algorithm is tested on some of these edge cases later on to iden-
tify possible improvements later on. One of the main aspects that had to be taken into
consideration were the different lane colors i.e. both yellow and white lane lines of varying
thicknesses/lengths had to be detected and marked.

2.1 Algorithm

The main dependency of this algorithm is OpenCV with basic dependencies on numpy,
matplotlib, and math for array manipulation and plotting images. The techniques used for
this project are Color-Palette selection, Canny Edge Detection, Region-of-Interest selection,
and Houghline feature transformation.

2.1.1 Color Plane representation

An initial 3-channel image is used as an input and is taken from the perspective of cam-
era placed on the hood of the car. The Red-Green-Blue color image is then changed into



a different colorspace. The different, valid colorspaces were either grayscale, HSV (Hue-
Saturation-Value) or HSL (Hue-Saturation-Luminosity). The last two are cylindrical coor-
dinate representations of an RGB color model as seen in Figures 1,2

Figure 1: Hue-Saturation-Lightness polar representation

Figure 2: HSL and HSV comparison

Colorspace Choice Grayscale converts a RGB image to a single channel image where
each pixel can take a value between 0 to 255. HSV, and HSL colorpsaces were explored
as it allows better classification of yellow lane lines, while white lane lines can be decently
detected using grayscale image itself. HSL seems to have a better classification than HSV
for yellow lanes compared to the surrounding asphalt as can be seen in Figures 4, ??.

Figure 3: Grayscale Image of a snap that consists of yellow and white lanes

2



Figure 4: HSV Image of a snap that consists of yellow and white lanes

Figure 5: HLS Image of a snap that consists of yellow and white lanes

Blurring The converted image then is smoothed/blurred using a gaussian filter to elim-
inate noise. Noise is random jumps in in intensity values compared to neighbors, and can
mean that a pixel could be mistakenly classified as an edge. The kernel chosen for this needs
to be positive and odd and a large kernel size means that potentially important information
is lost during heavy blurring.

Figure 6: Gaussian Blur with a 5*5 square kernel

3



Figure 7: Gaussian Blur with a 15*15 square kernel

2.1.2 Thresholding & Feature extraction

Once an image is converted to the needed colorspace and blurred, it needs to undergo further
processing to obtain the necessary lanelines.

Edge Detection This is done by Canny-edge detection which is a multi-stage algorithm
to detect color gradients between a specified threshold.

Figure 8: Canny Edge detection on a grayscale image

Figure 9: Canny Edge detection on a HLS image

Pixels with gradients higher than the upper threshold is chosen as an edge. Pixels with
gradients lower than the lower threshold is rejected as an edge. Pixels that have a gradient
between the lower and upper thresholds are only selected if these are neighbors with pixels
with gradients above the higher threshold. As can be seen in Figures 8 and 9, the HLS image
detects a lot of unwanted gradient-edges that need to be removed later on.

4



Region of Interest Despite the above processing, unnecessary edges on outlying regions
(skies, surrounding land that isn’t a highway) doesn’t need to be considered as this might
throw erroneous data. As the camera is mounted in the same location, and the highway is
usually in the same location in an image, a region of interest can be defined to focus further
processing. A trapezoidal region-of-interest is selected on the center lower-half of the image
as can be seen in Figure 11 as there is greater focus on the region than a triangular mask in
Figure 10.
The region of interest mask is applied to the complete canny image, to now output coordinate
points localized to the highway.

Figure 10: Overlay of Triangular Region of Interest

Figure 11: Overlay of Trapezoidal Region of Interest

Feature Extraction Following the masking, features (coordinate points) are extracted
and converted into line segments. This s done using a hough transform where each input
measurement contributes to a globally consistent solution.
The resolution of the transformation is set using distance and angle resolutions in pixels and
radians respectively. Accurate houghlines are obtained by tweaking parameters that control
the minimum number of votes in a cell for a candidate line, the minimum line length (to
reject segments shorter than a given pixel length), the maximum line gap (to connect points
on the same line).

5



Figure 12: Displayed Hough features

Layering lines The houghlines needs to be layered onto a blank image properly. The
return of feature extraction is two sets of coordinates (x,y) which represent endpoints of
a line. A valid coordinate set for drawing is one that doesn’t represent a vertical line or
one in which the absolute value of the gradient is above a certain threshold. Using this,
and comparing x1 and x2 to the x-midpoint of the image will ensure that the lines can be
properly distinguished into left and right lanes.

3 Results

A lot of time and effort was spent in tuning parameters for every aspect of the algorithm. The
simplistic algorithm above works very well for each of the images, and the two test videos.
In the challenge video, it starts to fall apart, however still functions. The algorithm was
tested on a night-time driving sample video however it was unable to detect any lane lines
due to extremely low ambient lights, blinding street lights, and headlights over-illuminating
lane lines. The outputs for each of the test images are shown below.

Figure 13: Solid White Curve

Figure 14: Solid White Right

6



Figure 15: Solid Yellow Curve

Figure 16: Solid Yellow Curve II

Figure 17: Solid Yellow Left

Figure 18: White Car Lane-Switch

The obtained videos can be seen on Youtube.

4 Conclusion & Further Improvements

The algorithm is a step in the right direction to detect lane lines, however, it can definitely
be improved much more. There can definitely be a more optimum selection of parameters
that have not been explored in this project.

7

https://www.youtube.com/playlist?list=PLMr_u-BsTKSoWrumKl-4sDf_keQxDZFaa


This algorithm will fail in the case of low light, heavy snow/rain conditions, as well as
moderate-to-significant levels of traffic. In addition to this, should the car drive on a steeply-
curving or a steeply-inclined lane, the algorithm would start to glitch. As in the test challenge
case, significant lane-markings or color-gradients on the road would cause a false positive.
Testing on other roads that are not highways should also be done, as the region of interest
would now be slightly different.

8


	Introduction
	Methodology & Implementation
	Algorithm
	Color Plane representation
	Thresholding & Feature extraction


	Results
	Conclusion & Further Improvements

