
Udacity Self-Driving Car Nanodegree
Term One: Computer Vision & Deep Learning

Project Two: Traffic Sign Classification

Nishan Srishankar
Worcester Polytechnic Institute

2017

1 Introduction

One of the fundamental aspects in implementing a self-driving car is perception and deals
with how a car would identify aspects of interest that are necessary for its functioning or could
impede its performance. This could include traffic signs, signals, neighboring vehicles, lane
lines, and even chaotically behaving humans or cyclists. This project deals with classifying
traffic signs using supervised learning. In real-life, traffic signs would have to be detected in
a region of interest before being classified, and then acted upon.

2 Methodology & Implementation

Three pickled datasets (train, valid, and test) from the German Traffic Sign dataset are
given as a starting point, which are split according to a 0.67-0.09-0.24 ratio. The datasets
contain traffic sign images with dimension (32,32,3) and belong to one of 43 classes as seen
in Table 1. The training dataset contains 34,799 such images which is used to train a custom
Convolution Neural Network, tuned on the valid dataset, and verified on the test image
dataset and new images.



Table 1: Analysis of traffic sign training set

Class Index Sign Name Count
0 Speed limit (20 km/h) 180
1 Speed limit (30 km/h) 1980
2 Speed limit (50 km/h) 2010
3 Speed limit (60 km/h) 1260
4 Speed limit (70 km/h) 1770
5 Speed limit (80 km/h) 1650
6 End of Speed limit (80 km/h) 360
7 Speed limit (100 km/h) 1290
8 Speed limit (120 km/h) 1260
9 No passing 1320
10 No passing for vehicles over 3.5 metric tons 1800
11 Right-of-way at the next intersection 1170
12 Priority road 1890
13 Yield 1920
14 Stop 690
15 No vehicles 540
16 Vehicles over 3.5 metric tons prohibited 360
17 No entry 990
18 General Caution 1080
19 Dangerous curve to the left 180
20 Dangerous curve to the right 300
21 Double curve 270
22 Bumpy road 330
23 Slippery road 450
24 Road narrows on the right 240
25 Road work 1350
26 Traffic signals 540
27 Pedestrians 210
28 Children crossing 480
29 Bicycles crossing 240
30 Beware of ice/snow 390
31 Wild animals crossing 690
32 End of all speed and passing limits 210
33 Turn right ahead 599
34 Turn left ahead 360
35 Ahead only 1080
36 Go straight or right 330
37 Go straight or left 180
38 Keep right 1860
39 Keep left 270
40 Roundabout mandatory 300
40 End of no passing 210
42 End of no passing by vehicles over 3.5 metric tons 210

2



2.1 Preprocessing

The datasets are simply preprocessed by conversion to grayscale, followed by normalizing to
have zero mean, and a small standard deviation. The dataset is also repeatedly shuffled. A
grayscale colorspace was chosen rather than leaving images in RGB from literature review
into the LeNet architecture.In addition to grayscaling and normalizing, adaptive histogram
equalizing was also looked into for the initial iterations of this project but was then removed.

2.2 Data Augmentation

If classes are severely underrepresented, images are randomly rotated, randomly translated,
sheared, and scaled. In addition to this, some classes can be further augmented as seen in
Table 2. Images in some classes are invariant in which they can be either flipped vertically
or flipped horizontally and still belong to the same class, or even be flipped vertically and
used to augment another class (Flip Labels).

Table 2: Secondary augmentation

Augmentation Class Index
Flip Vertical 9,10,11,12,13,15,17,18,21,22,23,25,26
, 27,28,29,30,31,32,35,40,41,42
Flip Horizontal 1,5,7,9,10,12,15,17,32,38,39,40,41,42
Flip Labels [19,20],[33,34],[36,37],[38,39]

Figure 1: Augmented class representations

3



Figure 2: Sample augmented images

Augmentation increases the dataset length from 34,799 images to 128,192 images (which
is almost a factor of three!).

2.3 Balancing Classes

Data augmentation is also done such that classes won’t be misclassified due to under-
representation as seen in Figure 1, however it can be seen as the dataset is still unbalanced.
In an attempt to balance classes, the augmented dataset is pruned to have approximately
2500 images per class for better representation which brings down the training dataset to
101,373 images. By hashing each of the images in the datasets, it was seen that there are
no duplicate images of the training dataset in the validation, or test datasets which could
result in skewed accuracies.

2.4 Convolution Neural Network

Various convolution networks were tried out on the balanced-augmented training set de-
scribed above. The LeNet-5 architecture was initially tested as a benchmark and was seen
to obtain a 93 % accuracy on the training dataset. Additional dropout or regularization
techniques could improve this accuracy. As a means of understanding the material taught
in this course, two additional architectures were analyzed: VGG-16, and Inception-module.
The VGG-16 architecture resulted in a training accuracy of approximately 94 %. The in-
ception architecture that was tested out consisted of a two convolution layers as a stem,
followed by an inception module seen in Figure 3 (Inception-V3 uses around 8), followed by
two full-connected layers and a classifier as the root. The issue with the two additional ar-
chitectures was the sheer time it took for training parameter-heavy architectures, with even
the simple, dimensionally-reduced Inception architecture taking approximately 300 s- 500 s
for an epoch (one forward followed by back-propagation pass) on an AWS instance. This

4



meant that learning-rate, batch-size and additional hyper-parameters couldn’t be trained
effectively.

Figure 3: Inception Modules

The final CNN architecture that was chosen was relatively simple as seen in Table 3
and takes in grayscale images with hyper-parameters seen in Table 4. The CNN is better
generalized by implementing dropout layers to reduce over-fitting and help in generalizing,
and L2-regularization to penalize large weights and biases. An Adams optimizer was used
instead of vanilla Gradient-Descent since this intrinsically implements learning-rate decay as
well as momentum and is very useful for better convergence and to prevent overshooting.

5



Table 3: Chosen CNN architecture

Layer No. Detail Description
0 Input Layer Shape= (32,32,1)

1 Convolution w\RELU activation

Kernel: (5,5)
Stride: (1,1,1,1)
Padding: Same
Input Feature Map: 1
Output Feature Map: 16

2 Max-Pooling Layer
Kernel: (1,2,2,1)
Stride: (1,2,2,1)
Padding: Same

3 Convolution w\RELU activation

Kernel: (3,3)
Stride: (1,1,1,1)
Padding: Same
Input Feature Map: 16
Output Feature Map: 32

4 Max-Pooling Layer
Kernel: (1,2,2,1)
Stride: (1,2,2,1)
Padding: Same

5 Convolution w\RELU activation

Kernel: (3,3)
Stride: (1,1,1,1)
Padding: Same
Input Feature Map: 32
Output Feature Map: 64

6 Max-Pooling Layer
Kernel: (1,2,2,1)
Stride: (1,2,2,1)
Padding: Same

7 Flatten Layer

8 Full-Connected Layer w\RELU activation
Input Feature Map: 1024
Output Feature Map: 1024

9 Dropout Layer Keep Probability: 0.50

10 Full-Connected Layer w\RELU activation
Input Feature Map: 1024
Output Feature Map: 512

11 Dropout Layer Keep Probability: 0.50

12 Full-Connected Layer w\RELU activation
Input Feature Map: 512
Output Feature Map: 256

13 Full-Connected Output Layer w\Softmax
Input Feature Map: 256
Output Classes: 43

6



Table 4: Tuned Hyper-parameters

Hyperparameter Detail
Epochs 75
Batch Size 64
Learning Rate 7.5e-4 or 1e-3
L2 Regularization Penalty 1e-6

Once adequate performances were obtained from tuning learning rates and batch sizes,
further optimization wasn’t performed.

3 Results

As seen in Figure 4, the training loss plateaus at around 99 % accuracy, and validation (as
well as test) accuracy reaches around 95-96 % accuracy. The stopping epoch right now is
random, but methodologies can be implemented to stop when training accuracy is high and
loss is minimal after a patience of a few epochs (Early Stopping).

Figure 4: Training-Validation Accuracy vs. Epoch

Figure 5: Training Losses vs. Epoch

7



Figure 6: Confusion Matrix

An in-depth analysis of the Confusion Matrix (Figure 6) can be seen in the attached
notebooks/ html files. The confusion matrix evaluates the accuracy of a particular classi-
fication where Ci,j is equal to the number of observations in class i, but are predicted to
be in class j. Ideally, the Confusion matrix heat map would show a high intensity on the
main diagonal corresponding to correctly predicted observations. Some classes are seen to
be easily misclassified (lower accuracy obtained from Pandas confusion matrix), but could
be improved by further data augmentation or creating a deeper network.

The CNN was also tested out on images found on the net, as well as from the Belgian
traffic sign dataset with varying successes over different iterations. The main issue seen is
identifying images that haven’t been trained on (leading to misclassification), and also to
identify signs of different shapes/colors but have the same class index as seen in the Belgian
dataset. There are two main notebooks attached with different learning rates- a learning
rate of 1e-3 performs slightly better on the validation and test sets as well as on the new
images (has very large belief in the correct class, or has a probability of 1.0 for the correct
class).

In addition to this, the activations of the layers are shown in Figure 7 which reveal
how the CNN chooses which identifying characteristics it deems important for classification
during feature extraction.

8



Figure 7: Feature Map of an activation layer

4 Conclusion & Further Improvements

As can be seen from the Results section, the CNN successfully classifies most images, in-
cluding images that haven’t been seen before. The performance could be better improved
by making the network deeper, using the VGG-16 and Inception architectures with pre-
trained weights or with adequate time, running for more EPOCHs on a GPU, and fine-tuning
chosen hyper-parameters.Furthermore, using Keras or a higher-level deep learning software
will make it easier for building the model, for implementing monitors like Early Stopping,
and mainly for tuning hyper-parameters much more easily. Scikit-Learn Cross-Validation’s
GridSearch or RandomSearch was looked into (but later abandoned) for choosing optimum
hyper-parameters.

9


	Introduction
	Methodology & Implementation
	Preprocessing
	Data Augmentation
	Balancing Classes
	Convolution Neural Network

	Results
	Conclusion & Further Improvements

