
Udacity Self-Driving Car Nanodegree
Term One: Computer Vision & Deep Learning

Project Three: Behavioral Cloning

Nishan Srishankar
Worcester Polytechnic Institute

2017

1 Introduction

This project deals with the creation of an end-to-end convolution neural network to allow
a car to drive in a track using the driving simulator after seeing a few training laps. This
is a prime example of behavioral cloning as the network learns to mimic and generalize the
driving behavior of an user.

2 Methodology & Implementation

The methodology to bring about behavioral cloning is to capture a dataset of the user
driving/manually controlling the car, processing and augmenting this image, and passing
the image dataset as features to a CNN which tries to learn the respective steering angle
labels. This is described in detail in the following subsections.

2.1 Data Capture

Data was obtained with the intent of using it in two different methods: in the first, both
Track One (beach) and Track Two (jungle) are used to collect data whereas in the second
method, only Track One data is captured and then tested on an ”unseen” Track Two (to
mimic a test set). The provided Udacity driving log was used as a starting point, which was
then augmented using laps of forward-lap driving, reverse-lap driving, and recovery driving.
Track One has a bias of left-turns hence using a reverse lap dataset helps the neural network
to generalize better. Furthermore, recovery driving is useful for the neural network to learn
how to successfully recover from perilous positions from the corner/edges of the road back
to the center of the road.

The number of images used for training is increased by using images from the left-
and right- cameras (in addition to the central cameras), albeit with a small bias added to
the steering angle label. Furthermore, features that correspond to steering angles of 0 rad



(straight driving), unacceptably high steering angles, extremely slow driving (speed < 5
mph) are discarded to prevent the Neural network from learning possibly dangerous driving.
A further aspect which could be removed are images that have large corresponding braking
values which points to reckless driving.

Figure 1: Initial Image obtained from the center camera

2.2 Data Augmentation

To generate more images, the initial dataset is randomly augmented using a combination of
translations, vertical flips, brightness/contrast modifications, and corruption with Gaussian
noise. Augmentation is helpful due to differences in Track One vs. Track Two; Track Two,
for instance, consists of shadowy regions as well as regions where the road is in an incline
or decline which is not seen in Track One. This is mitigated by translations and contrast
modification. Vertical flips of images ensure that left, and right turns are equally represented
in the dataset. The addition of noise helps generalize the data a bit better.

Figure 2: Slightly augmented image

2



2.3 Balancing Classes

As can be seen in Figure 3, some steering angle classes are extremely under-represented
resulting in an unbalanced dataset. Two methods are used to balance the dataset. First, all
images with a significant steering angle are vertically flipped (to mimic turning in an opposite
direction). Secondly, classes are pruned such that to obtain a slightly more balanced dataset
as can be seen in Figure 4.

Figure 3: Example histogram of a sample dataset

Figure 4: Example histogram of a balanced dataset

2.4 Preprocessing

Since Keras is utilized as a neural network library to run on top of Tensorflow, pre-processing
is done in the first layer of the Sequential model. Preprocessing involves cropping out regions
of the raw image as seen in Figure 5 that correspond to the sky or the hood of the car which
are not useful to the architecture, and normalizing the image to have zero mean and a small
standard deviation.

3



Figure 5: Cropped Image

2.5 Convolution Neural Network

The Convolution Neural Network that was used as a reference was NVIDIA’s end-to-end
convolution neural network (Figure 6) specifically designed for self-driving simulations. The
CNN takes in input images in YUV space to map pixels from a front-facing camera to steering
commands, and requires minimal training data from humans. This network learns to drive
in traffic, on local roads with or without lane markings, and on highways. Furthermore, the
network has around 27 million connections, and 250 thousand parameters though takes very
little time (approximately 50 seconds) to complete an epoch.

Figure 6: NVIDIA End-to-End CNN Architecture

The final CNN architecture used was streamlined slightly to reduce the number of param-
eters by sub-sampling/using strides greater than one, modifying/reducing output feature
maps, and implementing dropout and Early-Stopping to generalize and prevent over-fitting.

4



ELU was utilized as a nonlinear activation instead of RELU as this helps in speeding up learn-
ing. An Adams optimizer was used instead of vanilla Gradient-Descent since this intrinsically
implements learning-rate decay as well as momentum and is very useful for better conver-
gence and to prevent overshooting. Furthermore, Mean-Square-Error (mse) was utilized as
a loss metric instead of Softmax cross-entropy as this is a regression problem compared to
the previous classification problems with Traffic Signs.

Table 1: Tuned Hyper-parameters

Hyper-parameter Detail
Epochs Varied depending on dataset used

(approximately 3-10)
Batch Size 64
Learning Rate 1e-4
Early Stopping validation loss
Early Stopping min threshold 1e-4
Early Stopping patience 3

2.6 Controller

A Proportional-Integral (PI) controller is used to set and control a desired speed (that
is tinkered with). Additionally, to smoothen trajectories, a very basic implementation of
momentum is used where the current steering angle is weighted with steering angle previously
obtained. Throttle control is also achieved by modifying a multiplier to the throttle obtained
from the controller when the steering angle or speed goes above a specific threshold. Images
fed into drive.py are converted from RGB to YUV space whereas in OpenCV, images are
converted from BGR to YUV space. Modified controllers that run the .h5 file are either
mellow − drive.py or modified− drive.py.

3 Results & Improvements

The obtained video for driving on Track One can be seen on Youtube. The car remains on
the center of the road on Track One for most of the path, but waits a little too long to turn
near the dirt track (but still manages to nonetheless). The issue that was seen with Track
Two (jungle track) was that there were sections of the track where the car was effectively
’blind’ and couldn’t see the next section of the road- this was the case during either sharp
curves or steep inclines followed by sharp curves. In this case, it stands to reason that
cropping of the raw image (before input into the Neural Network) needs to be a bit more
conservative or non-existent.

The performance of this pipeline could be better improved by using pre-trained weights
from a different architecture (transfer learning) which is then fit to our application or by
using either a driving wheel or a joystick to better manipulate the car during manual mode
and generate smoother steering and hence better steering angles.

5

https://www.youtube.com/watch?v=JJ3b7Vj7nx8&index=5&list=PLMr_u-BsTKSoWrumKl-4sDf_keQxDZFaa&t=7s

	Introduction
	Methodology & Implementation
	Data Capture
	Data Augmentation
	Balancing Classes
	Preprocessing
	Convolution Neural Network
	Controller

	Results & Improvements

