
WPI, RBE 502, SPRING 2016, GROUP 10 1

Scaling Chains of Integrators
Rohit Sheth, Nishan Srishankar, Joseph McMahon, and Srishti Srivastava

Abstract—Recent advances in computing power have enabled
greater levels of simulation, and more detailed modeling. The
Chains of Integrators problem is to control a point mass robot in
2D or 3D with only one control input at the nth order derivative
(typically, this can be done up to 5th or 6th order derivatives).
For example, in a 2nd order system, acceleration is controlled, in
a 3rd order system, jerk is controlled, and in a 4th order system,
snap is controlled.

The problem specifically states that the system should reliably
visit one or more goal regions, while avoiding obstacles, and then
return to the origin.

This work shows a simple solution using the provided LQR
controller to track waypoints along a collision free path generated
by the A* algorithm. Future implementations for the ICRA
FMRB contest are also discussed.

I. INTRODUCTION

Fig. 1: Visualization of a path in 3D state space with
obstacles.

Optimal control has been successfully simulated for low
order dimensions and control derivatives. High-dimensional
and high-order system simulation allows for high accuracy and
robust control in trajectory tracking. The goal of this project
is to simulate the most generalized LQR (or LQG) controller
possible within the given challenge time (deadline submis-
sion for simulation is May 8th). This involves generating a
trajectory (shown in Figure 1), motion planning, and optimal
control.

q(0) = init ∧�(q(t) /∈ Obs) ∧
∧
i

�♦goali (1)

In constraint equation (2), a point mass attempts to maneu-
ver from an initial state and reach a goal within a given time
period while avoiding obstacles.

q(0) = init ∧�(q(t) /∈ Obs) ∧
∧
i

(counteri 
 Ti)
⋃
goali

(2)

where Obs ⊂ Rn; init ∈ Rn.
A cost-value function will be used evaluate initial state, in-

termediate trajectory states and all goal regions in conjunction
with the temporal logic constraints in equations 1 and 2 above.
A motion planning algorithm, A*, is implemented to satisfy
the temporal logic equation to avoid obstacles while visiting
all goal states. The path generated is then sampled down to 10
points, and these points are fed into the LQR controller which
finds the optimal way to connect them.

A. Problem Statement

A simple, graphical way to understand the problem is shown
in the generated simulations in Figure 2. The point mass starts
at a random position in each case (sometimes inside of an
obstacle), and it must visit all the randomly generated goals
while avoiding all of the randomly generated obstacles.

Fig. 2: LQR tracking A* generated paths.

The goal is for the point mass to move through the goal
regions without hitting obstacles. This requires trajectory gen-



WPI, RBE 502, SPRING 2016, GROUP 10 2

eration, motion planning, and controls. The dynamics of the
system are purely linear, and require little analysis.

The temporal logic equation can be depicted as an automa-
ton for i = 1 as shown in Figure 3.

Fig. 3: Buchi Automaton For given LTL equation for one
goal and one obstacle.

B. Contest Criteria

1) Decide realizability. Wrong answer is worse than no
answer.

2) Time between receiving problem instance and declaring
answer to #1.

3) Any violation of task formula is worse than not trying
to answer the problem instance.

4) Provided all of the above are successfully met (and pro-
vided that the problem instance is realizable), synthesis
times are recorded for increasing:

a) Number of integrators
b) Number of state dimensions
c) Number of goal regions
d) Number of obstacle regions.

5) Let the cycle-time be the time required to visit every
goal region at least once. The minimum and maximum
cycle-times in a trial are recorded.

Noise and disturbances are not yet implemented, and given
time constraints before ICRA 2016, solutions should first be
directed to the noise and disturbance free cases.

II. DYNAMICS

The dynamics of the system are relatively simple as the
problem requires controlling a point mass. A two dimensional
system (double integrator) can be expressed as a linear system
of equations given below:

ẋ =

[
0 1
0 0

]
x+

[
0
1

]
u+ ξ

y =
[
1 0

]
+ η

where ξ and η are either bounded disturbances (non-
deterministic) or stochastic processes.

The system given by the differential equation Dmq = u
is called a chain of integrators because it can rewritten as a
series of linear control equations as shown below.

ẋ1 = x2

ẋ2 = x3

...

ẋm−1 = xm

ẋm = u

y = x1

At first, we use several assumptions until simpler simula-
tions work, after which the problem will be generalized further.
Namely, the A* algorithm is used to take random collision-
free steps and evaluate their proximity to the next goal region.
Then once a collision-free path is generated, it is sampled (say
10 points along it) and these waypoints are passed to the LQR
controller.

Fig. 4: Simulation of the LQR system provided by the ICRA
FMRB team. It does not have any motion planning.

This method is very similiar to the system provided by the
ICRA FMRB team. That system does not have any motion
planning, and passes the center of goals directly to the LQR as
shown in Figure X. The path goes directly though an obstacle.

III. CONTROLS

The FMRB contest is a controller contest. No matter the
solution provided, it must implement a controller of some sort.
The contest criteria are focused on scalability – not optimality.
Scalable linear matrices and their forumlation with the LQR
controller are presented.

A. Formulating Scalability Equations

The scalability of the system is the primary contest criteria.
The entire system is easily linearized because it is an arbitrary
sized chain of integrators. This means the system can be
conveniently modeled using linearly independent matrices and
state vectors.



WPI, RBE 502, SPRING 2016, GROUP 10 3

The linear system is expressed as below.

ẋ = Ax+Bu

y = Cx+Du

If we have n dimensions and we define each dimension by[
x y z θ ... γ

]
.

xmn =



ẋ1
ẋ2
...
ẏ1
ẏ2
...
˙ym
...
˙γm


(3)

Am =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 . . . 0 0 1
0 0 . . . 0 0 0

 (4)

Bm =


0
0
...
1

 (5)

Amn =


[Am] 0 . . . 0
0 [Am] . . . 0
...

...
...

...
0 0 [Am]

 (6)

Bmn =


Bm

Bm

...

...
Bm

 (7)

Cmn = (Bmn)
T (8)

Dmn = 0 (9)

B. Linear Quadratic Regulator

LQR (Linear-Quadratic Regulator) is the solution to a set
a linear differential equations, such as those given in the
problem. The cost of the dynamics is a quadratic function
as shown in Equation 10. The cost function is a solution to
the Linear-quadratic problem where Q, Qf and R are the state
cost, final state costs, and input cost matrices. This also extends
to the LQG problem, which is LQR with added white noise.

J =

∫ T

0

(x(τ)TQx(τ) + u(τ)TRu(τ))dτ + x(T )TQfx(T )

(10)

(a) Trajectory of LQR tracking A* path.

(b) Evolution of State Vector while LQR tracks A* path.

Fig. 5: Simulation of LQR tracking A* generated path. It
successfully avoids one obstacle and reaches one goal region.
After that the code still needs to be improved.

IV. MOTION PLANNING

The following assumptions regarding obstacles will be made
in motion planning.

• Static Obstacles.
• Convex Obstacles.
As a minimum goal, a manually generated trajectory satis-

fying the temporal logic conditions is fed to the controller.



WPI, RBE 502, SPRING 2016, GROUP 10 4

As a reach goal, a visibility graph based method is used to
divide the entire space in discrete triangles. A set of trajectories
are generated by connecting midpoints of adjacent triangles.
Trajectories which do not satisfy temporal logic condition are
eliminated. This leaves a set of trajectories which visit all
goal regions while avoiding the obstacles. Shortest distance
trajectory is then selected for planning the motion.

Furthermore, A* can be implemented on mid-points of
sections generated by the visibility graph to reduce execution
time and high number os explored states to obtain a quick
path.

A. A*

A* is a best-first-search algorithm which can be solve
problems by searching in a pre-determined ’greedy’ manner
to find an apparent quick path to a goal. Paths is estimated
by a cost function which is the sum of cost-from start and
cost-to-go to goal. Inflating the cost-to-go will determine the
greedy approach of A*. If the cost-to-go is not admissible, the
algorithm may not find the shortest path.

while Queue.empty == false do
read current-state;
if current-state is goal then

break;
end
for next-state in neighbours of current-state do

new-cost = cost-from(start) + cost-to-go(goal);
if next-state not unique or new-cost less than

old-cost then
old-cost = new-cost;
priority = new-cost + heuristic(new-state to

goal);
end
if next-state not in collision then

Queue.put(next-state, priority);
end
parent(next-state) = current-state;

end
end

Algorithm 1: A* Algorithm

V. PROGRESS

The competition dry run simulation is on May 1st. The
real contest simulations take place May 8th and May 15-16th.
The Gaussian error and disturbances, and optimal solutions
are not the primary concern. Scaling a solution that meets all
of the specifications is the goal, and evaluating realizablity is
important because a partial or invalid solution is much worse
than no solution at all.

The benchmark software comes with a generator which
generates random goals and obstacles every time it is run.
This provides the world for the point robot to move in,
which itself can be spawned anywhere in the world, including
inside obstacles. Similarly, the goals can also be encased in

obstacles, in which case our program should identify that it is
an unsolvable problem.

Once the world and the robot are successfully generated, the
A* algorithm generates a path from the initial point visiting
all goal regions while avoiding obstacles as shown in Figure 5.
This path is sampled to give 10 waypoints along the collision
free path that are fed to the LQR, which in turn tracks
them. This method is almost working per the contest’s scaling
specification.

REFERENCES

[1] Smith, S. L. et al. ”Optimal Path Planning For Surveillance With
Temporal-Logic Constraints”. The International Journal of Robotics Re-
search 30.14 (2011): 1695-1708. Web.

[2] Murray, Richard. Optimization-Based Control. 2nd ed. California Institute
of Technology, 2010. Print.

[3] Rantzer, Anders. ”Dynamic Programming Via Convex Optimization”.
(1999): n. pag. Print.

[4] Hespanha, Joao. Linear Systems Theory. Princeton: Princeton University
Press, 2009. Print.

[5] Fainekos, Georgios E. et al. ”Temporal Logic Motion Planning For
Dynamic Robots”. Automatica 45.2 (2009): 343-352. Web.


	Introduction
	Problem Statement
	Contest Criteria

	Dynamics
	Controls
	Formulating Scalability Equations
	Linear Quadratic Regulator

	Motion Planning
	A*

	Progress
	References

